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Abstract 
 
 Recent research has shown that adaptive neural based control systems are very effective in restoring stability 
and control of an aircraft in the presence of damage or failures.  The application of an adaptive neural network 
with a flight critical control system requires a thorough and proven process to ensure safe and proper flight 
operation. Unique testing and performance evaluation tools have been developed as part of a process to perform 
verification and validation of real time adaptive neural networks. The tools will help in FAA certification and in 
the successful deployment of neural network based adaptive controllers in safety-critical applications. The 
process to perform verification and validation process is evaluated on a typical neural adaptive controller, and 
the results are compared.   
 
1  Introduction 
 
Several of the solutions developed during the F-8 digital fly-by-wire program in the 1970s 
and 80s can be directly applied to the current research in neural flight control. A brief 
historical review of the digital fly-by-wire program provides a starting point for developing a 
verification and validation approach for neural flight control. 
 
The primary challenges addressed by the digital flight-by-wire program included: 

• Hardware reliability 
• Software reliability 
• System validation 

 
The solutions to these challenges were based on the lessons learned from a major previous 
program, the Apollo program. The first phase of the digital fly-by-wire program actually used 
a single Apollo flight computer and sensor set. Software reliability was insured by using the 
software development processes from Apollo. Likewise System validation was accomplished 
in a similar manner as the Apollo program. 
 
The second phase of the digital fly-by-wire program addressed hardware reliability in a new 
manner: it used three identical flight control computers to provide reliability. The new triple 
redundant hardware approach introduced a new software component to handle detection, 
isolation, and reconfiguration due to hardware failures. With the new computers, based on the 
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Space Shuttle’s flight computers, the software development process evolved from the 
baseline approach used during the Apollo program [1, 2, 3] 
 
Safety–critical applications require that the system can cope with unforeseen catastrophic 
changes or slow degradation over the time. Although aircraft flight control design by classical 
techniques has produced reliable and effective control systems, the desire to create new 
concepts in aircraft design has resulted in increased research in advanced control techniques. 
The new concepts require the aircraft to perform over an increased range of operating 
conditions with variations in dynamic pressure and nonlinear aerodynamic phenomena, and 
the use of nonlinear actuation systems that increase the complexity of the control design. 
Over the years, a variety of approaches to control such processes have been developed (e.g., 
adaptive control). Adaptive control is concerned with the construction of robust controllers 
for processes, which change over time. All changes in the system dynamics are processed by 
the controller with the aim that the desired response to the control input is kept.  In the recent 
past, neural network based controllers are being used for such a purpose. Adaptive neural 
network techniques have demonstrated the potential as a good candidate for controlling 
nonlinear and complex aircraft flight system; thus many research centers and universities 
have been investigating and experimenting with these techniques and their applications 
[4,5,6,14]. It is often seen that neural networks are proposed as a tool for adaptive control of 
nonlinear systems with time-varying dynamics. A major benefit of such controllers is an 
ability to adapt to unforeseen events, e.g., stuck rudder in case of aircraft. Despite the 
advantages of on-line trained neural network based systems, the lack of methods to perform 
certification, verification and validation of such systems severely limits their use in real-life. 
     
Intelligent adaptive flight control is faced with many of the same challenges with the 
introduction of neural networks as a part of control system.  The neural networks must reside 
in redundant flight hardware, and must operate correctly in the presence of failures or 
unforeseen circumstances. The implementation of the neural network into software must be 
reliable by using a proven software development process that has evolved over the years. 
Furthermore, the unique adaptive nature of neural networks must be verified. Finally, 
validation of the entire system, including the adaptive neural network, the flight control 
system, and the dynamics of the aircraft under nominal and failure conditions must be proven 
to be safe, if not safer than their conventional counterparts. 
 
The technology being developed using neural flight control must be based on proven 
processes and demonstrated in flight test programs. Then the overall benefits of neural flight 
control will be found in tomorrow’s aircraft, just as the benefits of digital fly-by-wire are 
found in aircraft today. 
 
2. Verification & Validation of Neural Network 
 
Before artificial neural networks can be used in safety-critical systems a verification and 
validation process must be developed and later incorporated into the certification process. 
Present day controllers for safety critical applications, such as aircraft control, undergo 
extensive testing to qualify their operation. These systems must satisfy rigorous V&V 
requirements. Due to the special nature of on-line trained neural networks, traditional V&V 
techniques are not sufficient to provide guarantees for desired behavior. Therefore there is a 
need to develop new V & V techniques for adaptive neural systems.  
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The approach to verification and validation of neural network control system is based on the 
knowledge of qualifying previous control systems and unique characteristics of neural 
networks.  The approach is also dependent on how the neural networks affect the performance 
of the control system.  There are three main considerations in determining the approach to 
verification and validation of neural networks.  At the highest level, is the overall architecture 
of the neural network within the flight control system and it's performance.  The second 
consideration is the type of neural network being used.  The last consideration is probably the 
most important, it is the method used to adapt the neural network to solve the problem at 
hand.  This is normally called the learning algorithm.   
 
2.1 Issues involved in V & V of Neural Network 
 
Testing to ensure that the neural network always learns correctly is therefore critical.  The 
adaptation law adjusts the neural network weights to solve a particular task, or in a flight 
control system to minimize a particular error. The learning algorithm used in real-time 
adaptive flight control systems is derived from nonlinear analysis of the flight control system 
and the neural network.  The first step in verifying a real-time adaptive flight control system 
is to verify the learning algorithm by using sensitivity and noise analysis. 
 
Once the learning algorithm has been verified, the second step is to evaluate the neural 
network architecture with its learning algorithm.  Testing of the neural network architecture 
utilizes techniques such as sensitivity and noise analysis. 
 
Validating the aircraft systems as a whole, which uses a real-time adaptive neural network to 
correct for surface failures or aircraft damage, requires an extensive test matrix.  Stability and 
control of the aircraft must be evaluated across the entire flight envelope, and include all 
possible surface failures, as well as possible damage consequences.  The damage matrix can 
become quite complex, including such items as: loss of lift, pitch, roll, and yaw moments, 
asymmetrical drag, and failures in thrust.  Validating such a large test matrix requires 
automating the tasks and performing test using nonlinear simulations, as well as tests on 
actual flight article. Although these approaches are very promising with respect to their 
performance and their capability to adapt, the question how to ensure the correct behavior of 
such a system has not been addressed in detail. In general, each piece of software, which is 
used in safety-critical applications, has to go through a rigorous certification process to make 
sure that the certification authority is convinced that the system with such software is safe and 
ensure that the software cannot fail. The behavior of adaptive systems cannot be simply 
characterized. These systems must satisfy a stringent V & V, which assigns bounds to their 
output error under all operating conditions and guarantees that no combination of inputs will 
result in undesirable/catastrophic output.    
 
Current V&V methods, which rely heavily on testing, make up a large fraction of 
development costs for modern aircraft, yet they do not strictly guarantee performance.  The 
main challenge in the design of V&V methods for adaptive control system is due to the fact 
that such systems are nonlinear, and as a result, all aspects of the control design including the 
delineation of the performance specifications, the controller structure, the development of 
stability measures, and the guarantees in performance under different operating conditions are 
quite difficult. 
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Due to the special nature of an on-line trained adaptive neural network, traditional V&V 
techniques are not sufficient to provide guarantees for the safe and desired behavior. 
Therefore, there is need to develop V&V techniques for such systems [4,7,8,11, 13, 14].  
 
3. Development of the Tool for the neural network-based flight control system 
 
3.1 A Generic NN Analysis Tool 
 
A NN analysis tool was built using Matlab/Simulink and made part of the main simulation 
program. Development of a Matlab/Simulink based tool facilitated analysis and performance 
evaluation of the of the a adaptive/NN flight controller. The NN analysis tool implemented in 
Matlab/Simulink, includes the options of plotting the trajectory of the NN weights, the NN 
estimation of the inversion error, the approximation error, time history of the NN weights and 
aircraft parameters the trajectory of system states p, q and r. (roll, pitch and yaw rates). We 
have defined the basic features of the tool with the objective to provide access to the 
important parameters of the NN and adaptation algorithm. Furthermore, various measures of 
performance are defined and will be included as part of the tool. 
 
A tool includes time history plots of the weights and cross plotting of variables that shows the 
boundedness of the weights and the tracking error for the three channels, in addition to the 
NN estimation for the inversion errors. It includes the capability to input (gains) perturbations 
for sensitivity analysis i.e. Gains and Noise Analysis in the “NN tool analysis”. The Noise 
analysis will introduce a White Noise to the gains in each channel. This demonstrates how 
much the cancellation of the inversion errors changed with the addition of the white noise.  
 
3.2 Confidence tool 
 
The Confidence tool was developed to measure the performance of neural network during 
operation.  The primary motivation of developing this tool was to enable use of neural 
networks in applications such as flight control software.  The tool is a part of our layered 
approach [11] for V & V of neural network based adaptive systems. Our tool dynamically 
calculates the current performance characteristics of the system and provides a dynamic 
measure of how reliable the current approximation of the system is. The dynamic 
measurement checks all inputs and outputs values of the neural network and determines if the 
result of the neural network is reliable. Our tool is based on the statistical model of the output 
of the neural network. 
 
The process involves in calculating the confidence interval around the output of the neural 
network.  Confidence intervals provide a way to quantify confidence in the estimate of the 
neural network output. For a desired degree of confidence, (namely, for a given probability), a 
confidence interval is a prediction of the range of the output of a model where the actual 
value exists. With an assumption of a normal distribution of the errors, confidence intervals 
can be calculated for neural networks. Calculation of the confidence intervals can include the 
effects of developing neural network model from noisy data. We consider the application of 
Bayesian techniques for estimation of a dynamic measure on the reliability of the neural 
network’s current approximation [11,12]. The width of the error bars gives the measure about 
the performance of the neural network.  The width of the error bars depends on the locality 
density of input data, with the error bars increasing in magnitude in regions of the input space 
having low density.  
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4.0 Simulation  
 
The Intelligent Flight Control System (IFCS) system uses a direct adaptive neural network 
based approach to flight control. The main goal is to develop and flight demonstrate  adaptive 
neural network based flight control system. This approach incorporates neural network that 
uses flight control system feedback errors to provide adjustments to improve aircraft 
performance in both normal flight and with system failures. The flight project results will be 
utilized in an overall strategy aimed at advancing neural network flight control technology to 
new aerospace system designs including civil and military aircraft, reusable launch vehicles, 
uninhabited vehicles, and space vehicles.   
 
The concept is based on a dynamic inversion controller with a model-following command path. 
The feedback errors are regulated with a proportional plus integral (PI) controller. This basic 
system is augmented with an adaptive neural network that operates directly on the feedback 
errors. The adaptive neural network adjusts the system for miss-predicted behaviour, or changes 
in behaviour resulting from damage [10, 12].  
 
 
 

 
Figure 1: Simplified IFCS control architecture 

 
Figure 1 shows a block diagram of a simplified version of the controller [7]. This controller is 
based upon a dynamic inverse model. The commands C issued by the pilot are pre-filtered, 

cmdθ  and, in combination with the aircraft sensor readings Θ , a desired command output θU  
is calculated. This value is then fed into the inverse model of the aircraft (realized using a 
linear mapping or a pre-trained neural net). This inverse model then provides the actual 
command values, which are fed to the aircraft’s control surfaces. In the nominal and idealized 
case, the inverse model is an exact inverse function of the aircraft dynamics. Due to modeling 
inaccuracies or changes in the aircraft dynamics, there are deviations. In this case, the neural 
network kicks in: attempting to learn from the sensor readings Θ and the previous command 
output θU  how to minimize the deviation. Thus, the neural network’s output ADU  is used to 
adjust the value of θU .  
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4.1 The Simulation Result 
 
Results of the simulation using the developed tools are shown in the following figures. Two 
cases: Case 1: No failure or nominal case; Case 2: Failure introduced as Differential 
Stabilator at 8.5 degrees. In the nominal case, the neural network produces some output to 
accommodate for modeling inaccuracies shown in Figs. 2a-2c. During that time of adaptation, 
the confidence decreases. Figures (4a-4c) depict scenarios when a failure occurs (a control 
surface got stuck at angle 8.5 degrees). In this case, the adaptive neural network output needs 
to be substantially large to counteract the damage. Also, the width of the error band is much 
larger, indicating a low confidence.  
 
5.0 Conclusions 
 
In this paper, we have reported ongoing work on the development of tools for the verification 
and validation of neural network based adaptive controllers for aerospace applications. It is 
our belief that these tools will be able to help in V & V of neural network based controller 
and help in the successful deployment of aerospace systems in safety critical applications. We 
have developed the tools, which can monitor the neural networks’ behavior dynamically and 
calculate a confidence interval, indicating the reliability and sensitivity to flight control 
parameters. Our tools provide assistance to establish reliability of a neural network based 
adaptive control system and will enhance the understanding of performance of the adaptive 
systems, addressing the detection and possible prevention of catastrophic failures.  These 
tools will attempt not only to guarantee the performance of the adaptive systems at all 
locations of the flight domain but also enable the design of suitable V & V test techniques of 
these flight systems. These tools have been integrated into an Automated Neural Flight 
Control System Test Tool (ANCT) to help test engineers validate neural flight controllers in 
various flight conditions, quantify performance, and determine regions of stability. 
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Figure 1: Sigma Pi NN weights (no failure) 
 
 

 
Figure 2A: Roll confidence interval (no failure) 
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Figure 2B: Pitch confidence interval (no failure) 

 

 
Figure 2C: Yaw confidence interval on (no-fail) 
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Figure 3: Sigma Pi NN weights (surface failure) 
 

 
Figure 4A: Roll confidence interval (surface failure) 
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Figure 4B: Pitch confidence interval (surface failure) 

 

 
F igure 4C: Yaw confidence interval (surface failure) 

 
 
Simulation Conditions 

Fail Surface: Right Stabilator  
Fail Position: -8.5 deg. 
Start time of failure: 1.5 sec. 
Stop time of failure: 3.5 sec. 
 
M =.75/20k ft  
Stab trim=+2.85 deg. 
Canard trim = -3.94 deg.  
 
Uad=uad (1=roll; 2=pitch; 3=yaw – adaptation error (NN output) 
b – Confidence level “sigma”
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